Introduction à la Science des matériaux - Faculté STI

Génie mécanique

Cours No 5.1 Elasticité linéaire

V.Michaud

Ecole Polytechnique Fédérale de Lausanne

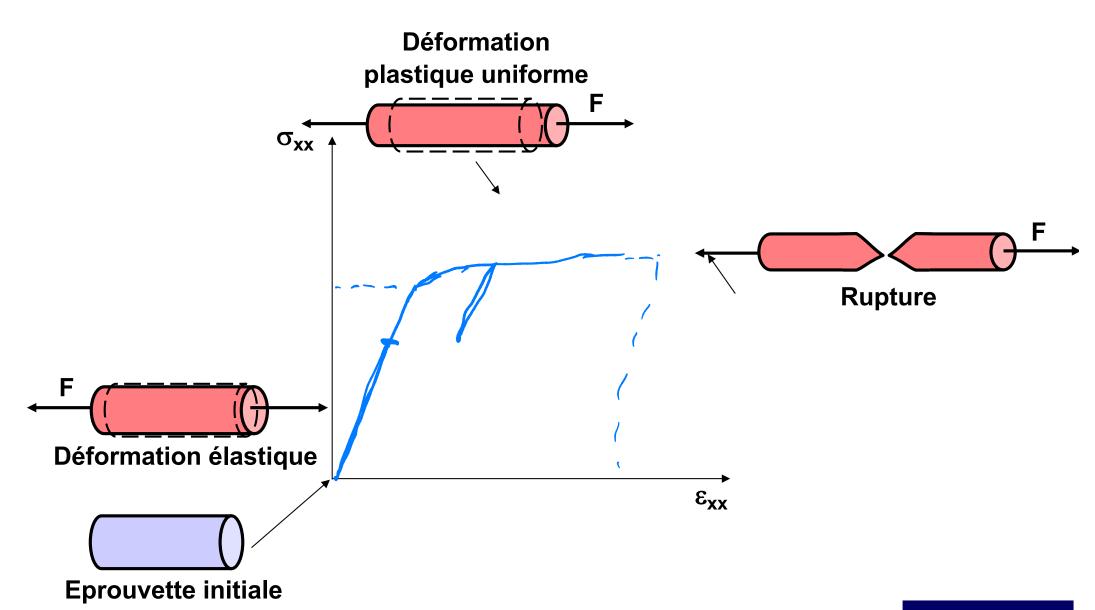
Table des matières

- D'où vient l'élasticité des matériaux?
- Contraintes et déformations
- Exemples de propriétés élastiques des matériaux

Objectifs du cours

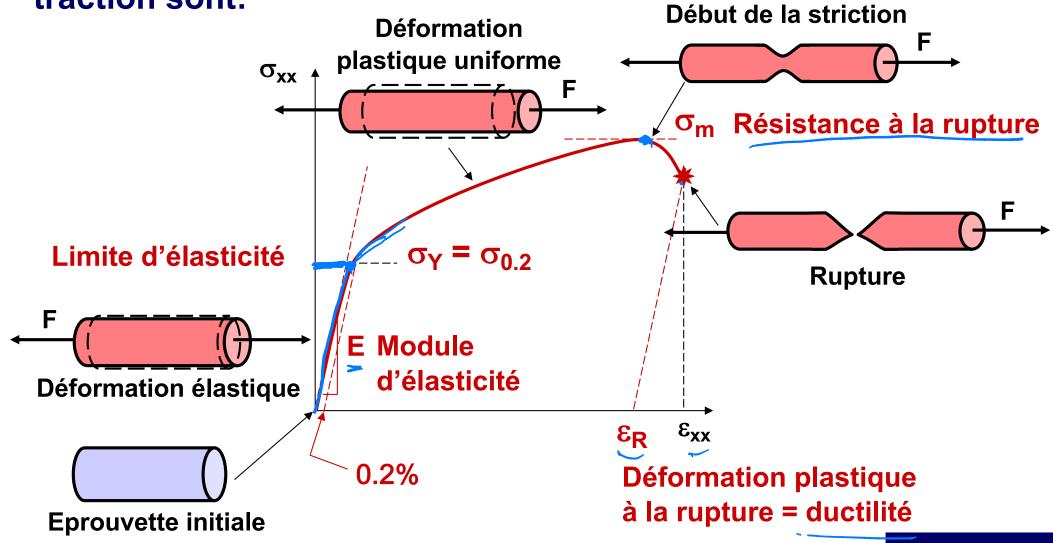
- Voir un test de traction
- Découvrir les propriétés d'élasticité linéaire des matériaux et comprendre d'où elle proviennent.
- Apprendre les cas de chargement en traction/compression.

Test de traction d'un métal



Test de traction d'un métal

Pour un métal typique, les étapes de la déformation en traction sont:



D'où viennent les propriétés élastiques des matériaux?

Rappel: Mis à part les forces de gravitation, toutes les autres forces de la vie "courante" sont de nature électrique.

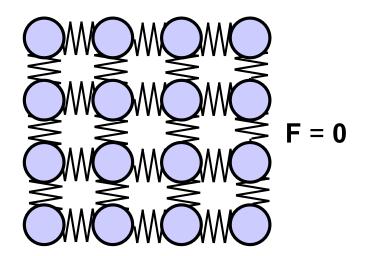
La rigidité du matériau est directement liée à la structure interne du matériau en question, et au type de liaisons.

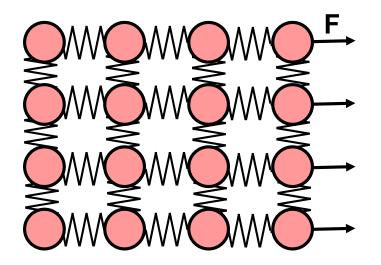
Rappel des types de liaisons dans les solides:

Type de liaison	Energie (kJ/mole)		
Ionique	>40		
Covalente	300-400		
Métallique	>40		
Faible	1-40 (400 pour H)		

Propriétés élastiques des matériaux cristallins

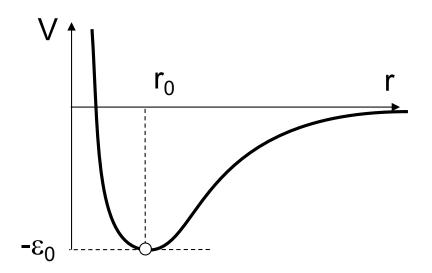
Pour un cristal, il est aisé de relier les propriétés élastiques aux liaisons interatomiques.



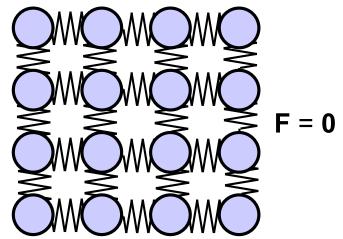


En prenant un potentiel de Lennard-Jones:

$$V = \varepsilon_0 \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^{6} \right]$$



Propriétés élastiques des matériaux cristallins



Comment estime-t-on cette raideur ou rigidité E?

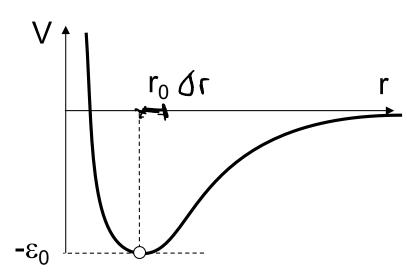
Il faut connaître le concept de contrainte et déformation, présenté aux slides suivantes:

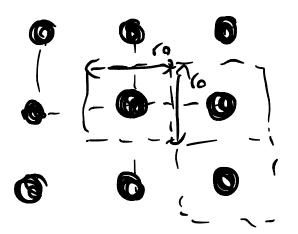
$$\sigma_{xx} = \frac{F_x}{S_x}$$
 [Pa = Nm⁻²] $\varepsilon_{xx} = \frac{\Delta L_x}{L_{ox}}$

E est le rapport entre contrainte et déformation, près de la position d'équilibre
 F, r₀, en considérant que la surface d'application de la force est la surface
 → d'une maille. On voit que plus ε₀ est grand
 → (en valeur absolue) et plus r₀ est petit, plus cette rigidité E sera grande.

Propriétés élastiques des matériaux cristallins

Calcul:





En prenant un potentiel de Lennard-Jones:

$$V = \varepsilon_0 \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^{6} \right]$$

$$T = \frac{F_{\text{ext}}}{A} = \frac{f_{\text{ext}}}{C^2}$$

$$E = \frac{dF}{dr} |_{r=r_0} \frac{1}{r_0} = \frac{12E_0}{r_0} \left(13 \frac{r_0^{12}}{r_0^{14}} - 7 \frac{r_0^{6}}{r_0^{4}} \right)$$

$$E = \frac{72E_0}{r_0^{3}} \quad \text{J/m}^3 \text{ plutot} \quad P_0 = N/m^2$$

$$F_{\text{ext}}$$

$$E = \frac{72E_0}{r_0^{3}} \quad \text{J/m}^3 \text{ plutot} \quad P_0 = N/m^2$$

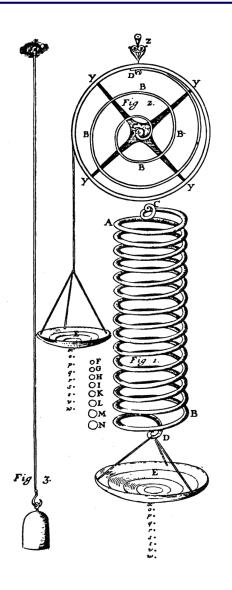
$$F_{\text{ext}}$$

$$E = \frac{72E_0}{r_0^{3}} \quad \text{J/m}^3 \text{ plutot} \quad P_0 = N/m^2$$

$$F_{\text{ext}}$$

$$F_$$

Propriétés élastiques des matériaux



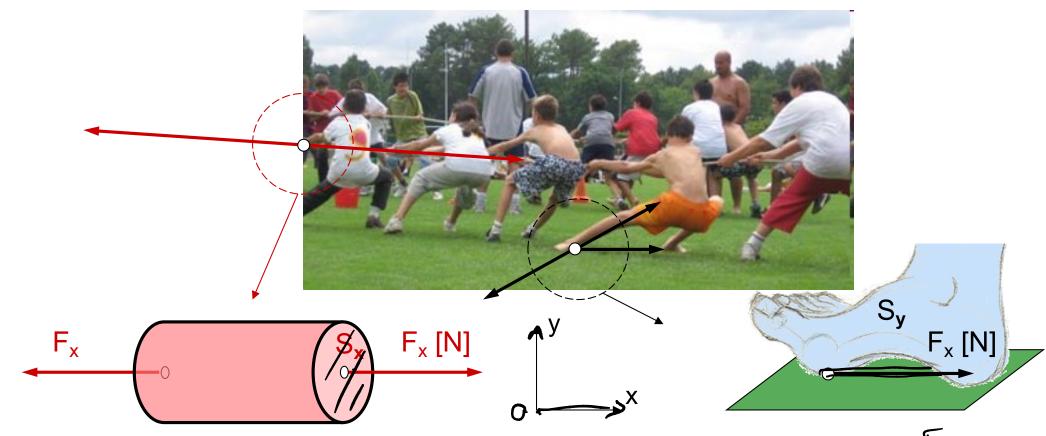
La connaissance de la structure interne de la matière, et du type de liaisons entre les atomes permet donc d'estimer la rigidité des matériaux...

Historiquement, on a procédé bien sur de manière inverse...On a un matériau, on effectue un essai de traction et on enregistre la force qu'il faut appliquer pour imposer une déformation donnée...

Loi de Hooke (1660): l'allongement est proportionnel à la force.

Définition de: Contraintes

Unités de contrainte
$$\frac{N}{m^2} = Pa$$



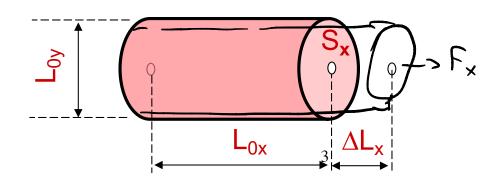
Contrainte en traction:

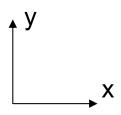
$$\int_{xx} = \frac{Fx}{Sx}$$

Contrainte en T_{xy} cu $T_{xy} = \frac{F_{x}}{S_{y}}$ cisaillement:

Définition de : Déformations

Lorsqu'un corps est soumis à des forces (contraintes) externes, il se déforme.





En traction:

Sans dimension!

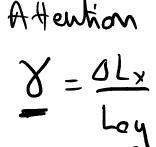
Déformations

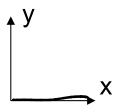
Lorsqu'un corps est soumis à des forces (contraintes) externes, il se déforme.

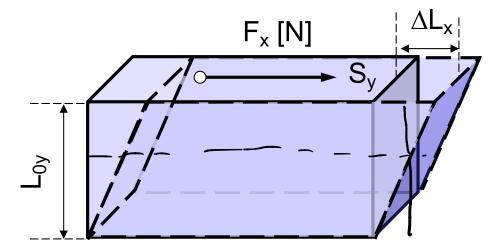
En cisaillement

Eny =
$$\frac{1}{2} \frac{\Delta L_{x}}{L_{ay}}$$

Sans dimension!





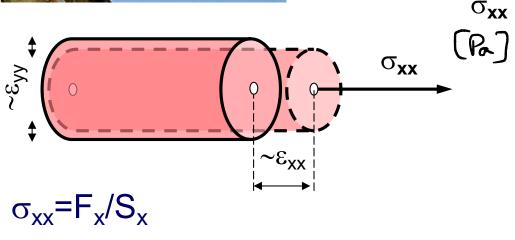


(Facteur $\frac{1}{2}$ par convention pour des raisons que vous verrez plus tard, Physique 3, et γ déformation en cisaillement)

Traction /compression uniaxiale

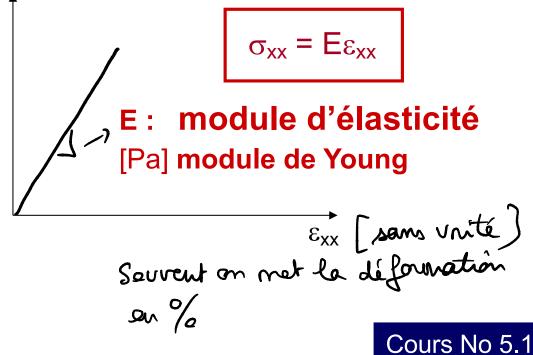
Dans une gamme de déformation dite **élastique**, un corps soumis à une charge normale se déforme mais revient à sa position originale une fois déchargé (**déformation réversible**).

Si la relation entre contrainte et déformation est linéaire, on parle de déformation élastique linéaire.

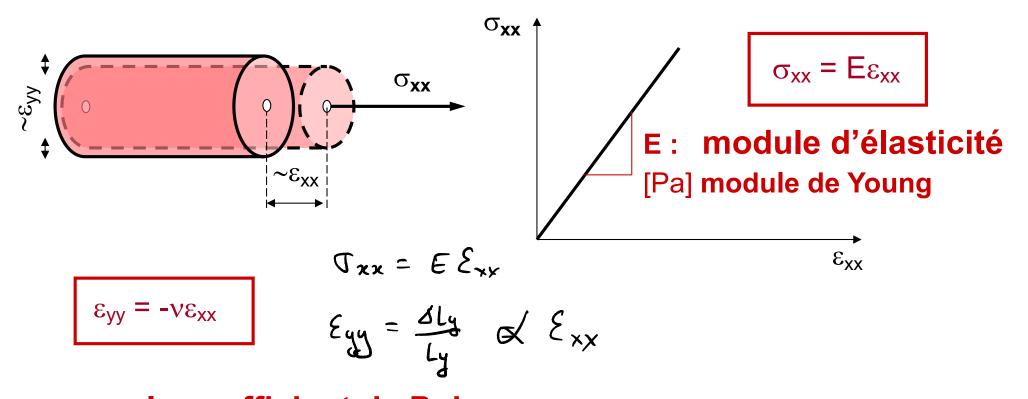


On observe $F_x=k \Delta I$

Alors σ_{xx} =k $\Delta I/S_x$ =k I_0/S_x . $\Delta I/I_0$ =E ϵ_{xx}



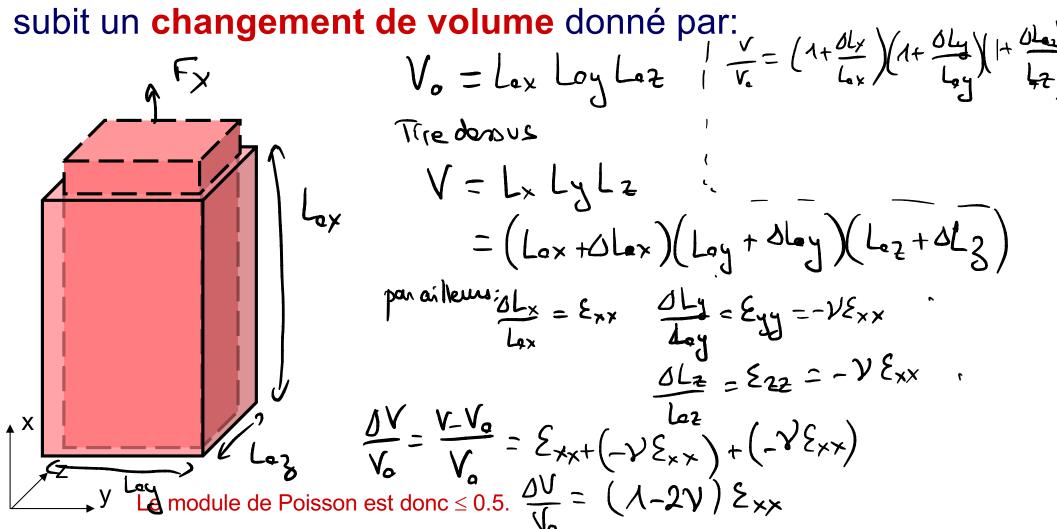
Cas de chargement: Traction/compression uniaxiale



v : **le coefficient de Poisson** mesure la contraction latérale lors d'une déformation uniaxiale

Traction/compression uniaxiale

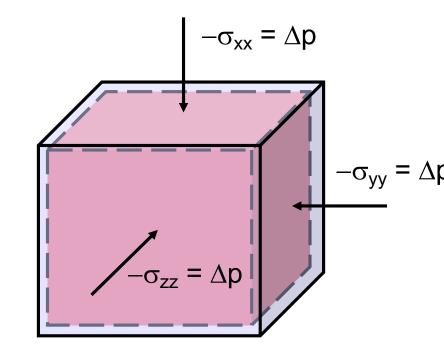
Lors d'une déformation uniaxiale (ou autre), le matériau



Le caoutchouc, avec $v \cong 0.5$ se déforme élastiquement presque sans changement de volume.

Compression hydrostatique

Une compression hydrostatique correspond à une contrainte normale constante (négative) sur toute la surface du solide.



On définit le coefficient de compressibilité K comme:

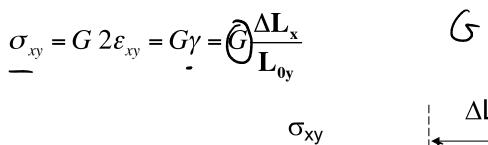
$$K = -V_0 \frac{\Delta p}{\Delta V} \quad [Pa]$$

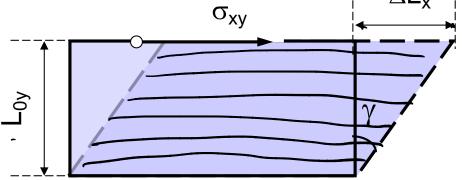
Pour un solide isotrope, on peut montrer que (voir le calcul dans la dernière planche du cours):

$$K = \frac{1}{3} \frac{E}{1 - 2v}$$

Cas de chargement: Cisaillement simple

Un corps soumis à un cisaillement simple élastique permet de définir un module de cisaillement G.





Cas de chargement: Cisaillement simple

Ces procédés sont-ils du cisaillement? Elastique?

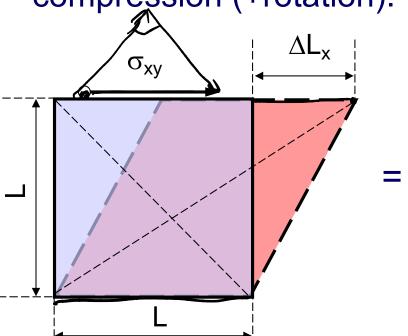
Application de vernis

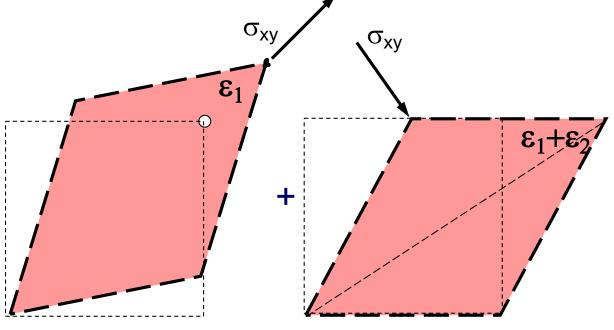
Freinage

Massage /

Relation entre E, v et G

Pour un solide **isotrope**, E, v et G ne sont pas indépendants. Une contrainte de cisaillement peut être décomposée en une traction +



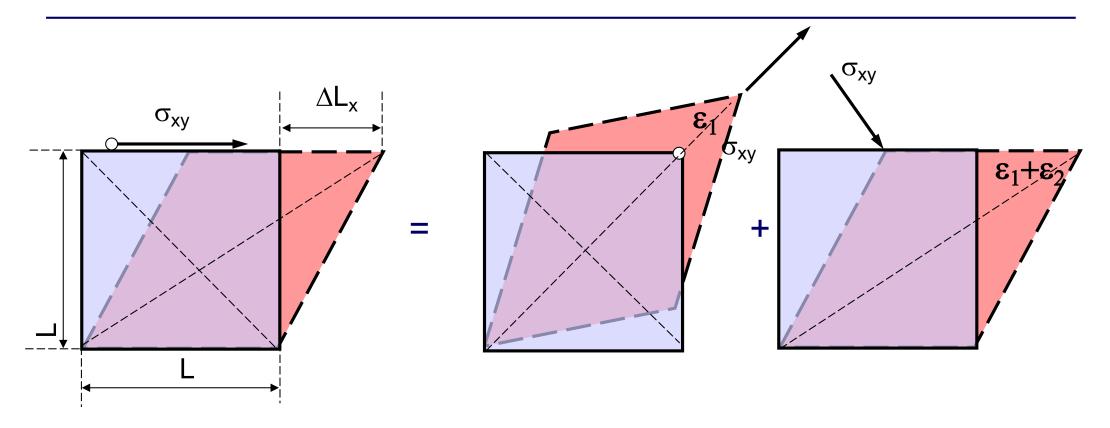


$$\mathcal{E}_{xy} = \mathcal{E}_{1} + \mathcal{E}_{2} = \frac{\mathcal{T}_{xy}}{\mathcal{E}} + \mathcal{V} \frac{\mathcal{T}_{xy}}{\mathcal{E}} = \mathcal{T}_{xy} \left(\frac{1}{\mathcal{E}}\right) (1+\mathcal{V})$$

$$\mathcal{E}_{xy} = \mathcal{E}_{1} + \mathcal{E}_{2} = \frac{\mathcal{T}_{xy}}{\mathcal{E}} + \mathcal{V} \frac{\mathcal{T}_{xy}}{\mathcal{E}} = \mathcal{T}_{xy} \left(\frac{1}{\mathcal{E}}\right) (1+\mathcal{V})$$

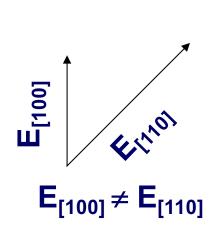
$$F_{2y} = \underbrace{\frac{1}{2} \frac{E}{1+v}} \underbrace{\frac{2}{2} E_{xy}} = \underbrace{\frac{1}{2} \frac{E}{1+v}} \underbrace{\frac{1}{2} \frac{E}{1+v}}$$

Relation entre E, v et G

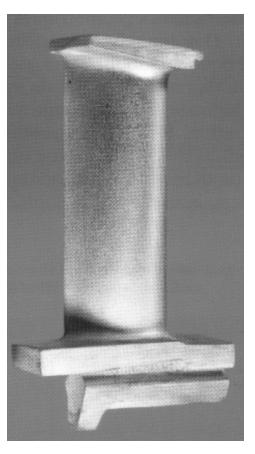


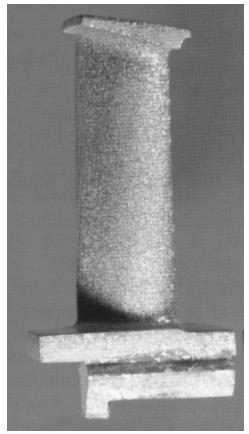
Anisotropie des propriétés élastiques

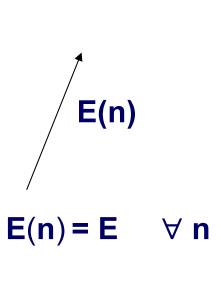
Les coefficients (E, v, G) peuvent dépendre de l'orientation et sont donc **anisotropes** (ex. monocristal). Un échantillon polycristallin présente des **propriétés isotropes**.



Aube de turbine monocristalline



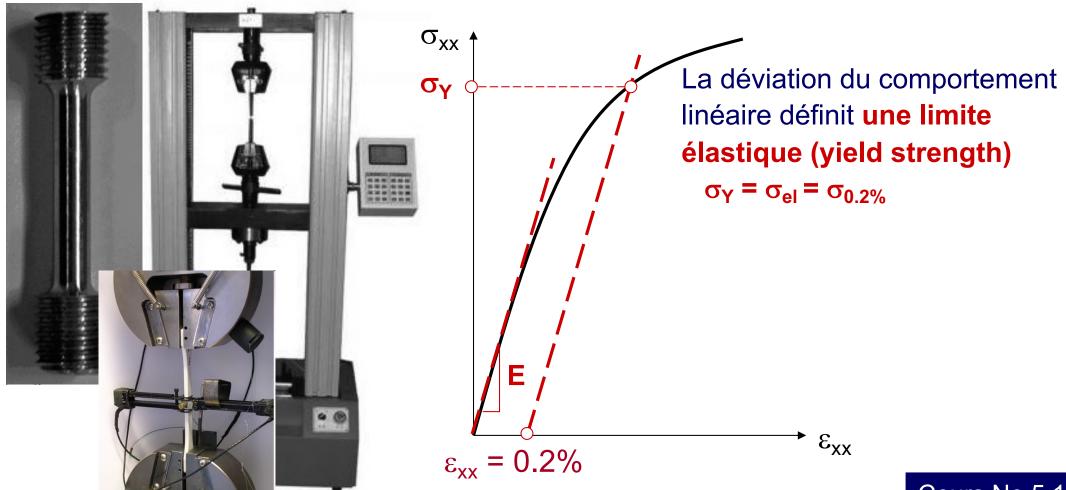




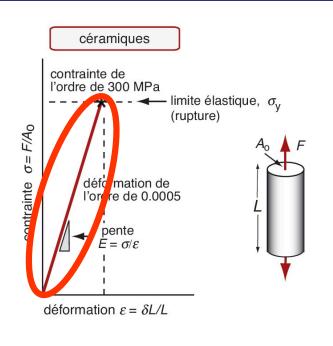
Aube de turbine polycristalline

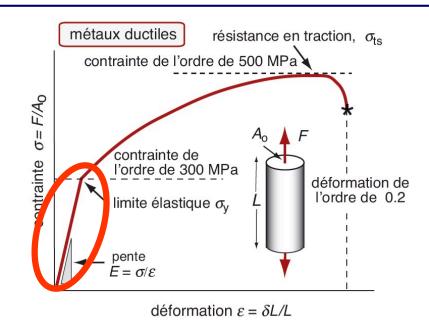
Méthodes de mesure

La mesure du module élastique et du coefficient de Poisson se fait généralement sur une **éprouvette de traction**. On impose un mouvement et on mesure force/allongement par des capteurs.



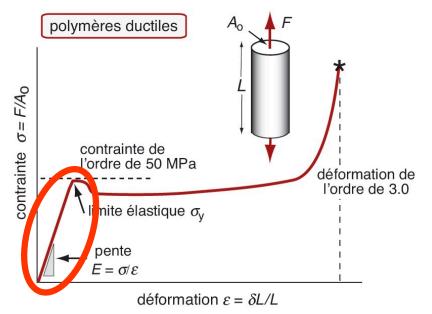
Exemples de comportements

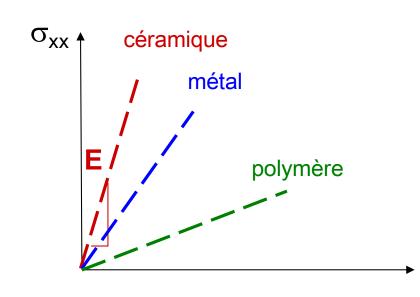




Repris de M. Ashby et al

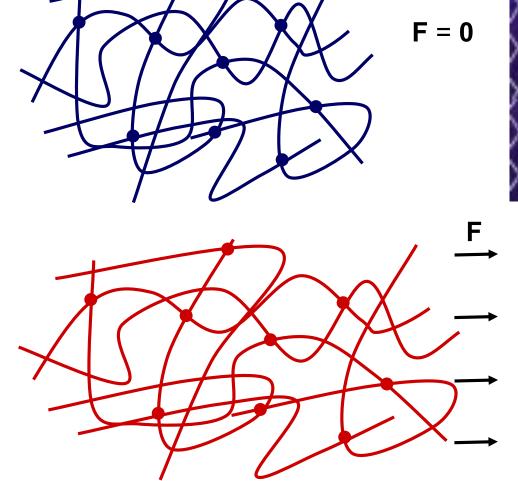
Cours No 5.1





Elastomères

Pour un élastomère, la déformation élastique a lieu grâce aux ponts entre les molécules, un peu comme un treillis.

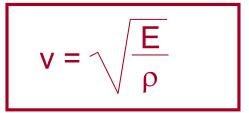


La déformation élastique peut atteindre 1000%. Au-delà d'une limite, tous les ligaments entre ponts sont étirés et le matériau se durcit.

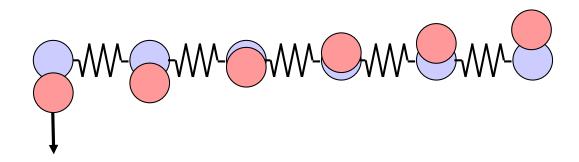
Autre méthode de mesure

La propagation des ondes acoustiques dans un matériau est aussi un moyen de mesurer ses propriétés élastiques.

Ondes **longitudinales** (traction-compression) Vitesse de propagation



Ondes **transverses** (cisaillement)



Cours No 5.1

Echographie

Diapason et diapason quartz

Traction/compression uniaxiale

Quelques coefficients:

Matériaux	E [GPa]	v [-]
Caoutchouc	0.001-0.1	~0.5
PTFE (Teflon)	0.5	0.46
Nylon	2 - 4	0.39
Chêne	11	0.3
Béton (en compression)	30	0.2
Aluminium	69	0.33
Verre	50 - 90	0.18 - 0.3
Acier	200	0.3
Saphir (Al2O3) axe c	435	0.3
Carbure de silicium (SiC)	450	0.17
Carbure de tungstène (WC)	450 - 650	0.22
Nanotubes de carbone	>1.000	~0.2
Diamant	1220	0.1

Résumé

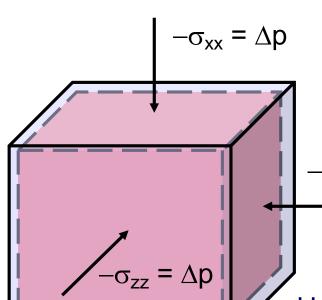
- Le module d'élasticité et le module de cisaillement d'un matériau définissent sa rigidité.
- Les déformations engendrent une variation de volume, qui dépend du module de Poisson!
- Ces propriétés dépendent essentiellement des liaisons interatomiques/moléculaires.
- Des tests simples quasi-statiques ou dynamiques (ondes) permettent de déterminer ces propriétés.
- Un matériau est censé être utilisé dans son domaine élastique si on veut retrouver la forme initiale lorsqu'on relâche la contrainte.

A retenir du cours d'aujourd'hui

- Connaître les définitions de contrainte, déformation, module d'élasticité, coefficient de poisson, coefficient de compressibilité, module de cisaillement.
- Savoir retrouver ces éléments sur une courbe de traction
- Savoir retrouver le module « idéal » d'un matériau à partir du potentiel de Lennard Jones.

Compression hydrostatique- Démonstration

On peut décomposer la pression en trois temps:



Une première

 $L_{0x} \rightarrow L_{0x}(1+\varepsilon_{xx}) = L_{0x}(1+\varepsilon_{xx})$

 $L_{0y} \rightarrow L_{0y}(1+\varepsilon_{yy}) = L_{0y}(1-\nu\varepsilon_{xx})$

compression selon x: $L_{0z} \rightarrow L_{0z}(1+\varepsilon_{zz}) = L_{0z}(1-\nu\varepsilon_{xx})$

Une seconde compression selon y:

$$-\sigma_{yy} = \Delta p$$

$$L_{0x}(1+\varepsilon) \rightarrow L_{0x}(1+\varepsilon)(1-\nu\varepsilon)$$

$$L_{0y}(1-\nu\varepsilon) \rightarrow L_{0y}(1-\nu\varepsilon)(1+\varepsilon)$$

$$L_{0z}(1-\nu\varepsilon) \rightarrow L_{0z}(1-\nu\varepsilon)(1-\nu\varepsilon)$$

Une troisième

compression selon z:

 $L_{0x}(1+\varepsilon)(1-\nu\varepsilon) \rightarrow L_{0x}(1+\varepsilon)(1-\nu\varepsilon)(1-\nu\varepsilon)$ $L_{0y}(1-\nu\varepsilon)(1+\varepsilon) \rightarrow L_{0y}(1-\nu\varepsilon)(1+\varepsilon)(1-\nu\varepsilon)$

 $L_{0z}(1-\nu\varepsilon)(1-\nu\varepsilon) \rightarrow L_{0z}(1-\nu\varepsilon)(1-\nu\varepsilon)(1+\varepsilon)$

En reportant sur

les volumes:

$$V_0 = L_{0x}L_{0y}L_{0z}$$

$$V = L_{0x}L_{0y}L_{0z}(1+(1-2\nu)\varepsilon)^3 = V_0(1+(1-2\nu)\varepsilon)^3$$

$$K=-\frac{V_0}{\varDelta V}\varDelta p=-\frac{V_0}{V-V_0}\varDelta p=-\frac{V_0}{V_0(1+3(1-2\nu)\varepsilon-1)}\varDelta p=\frac{-\varDelta p}{3(1-2\nu)\varepsilon}$$

soit

$$\mathsf{K} = \frac{1}{3(1-2\nu)} \frac{\sigma}{\varepsilon} = \frac{E}{3(1-2\nu)}$$